Part Number Hot Search : 
AN109 AV53R1AG S6108 CXP81100 MIC29710 JANTX1 R1EX24 CSC3280F
Product Description
Full Text Search
 

To Download V23990-P768-A60-D2-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p768-a60-pm datasheet flow pim 2 1200 v / 50 a 3~rectifier,brc,inverter, ntc very compact housing, easy to route mitsubishi igbt and fwd motor drives power generation v23990-p768-a60-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v maximum junction temperature t j max 150 c inverter transistor t sc t j 150c 10 s v cc v ge =15v 850 v p tot gate-emitter peak voltage w dc forward current surge forward current power dissipation flow 2 housing target applications schematic maximum ratings types i2t-value t j =t j max features i fav i fsm condition input rectifier diode aa i 2 t 490 t j =150c 1200 t p =10ms 79 t h =80c p tot t j =t j max a 2 s pulsed collector current power dissipation maximum junction temperature collector-emitter break down voltage dc collector current turn off safe operating area t j max short circuit ratings t p limited by t j max av c w a 100 a v 1200 100 vce 1200v, tj top max v ce i c t j =t j max t j =t j max v ge i cpulse t h =80c 95 t h =80c t h =80c 54 155 175 20 copyright vincotech 1 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode brake transistor t sc t j 150c 10 s v cc v ge =15v 800 v brake inverse diode brake diode 1200 i f t j =t j max 20 1200 70 t p limited by t j max peak repetitive reverse voltage i frm maximum junction temperature peak repetitive reverse voltage i frm v rrm w aa t p limited by t j max 100 t h =80c t h =80c 28 86 maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current v ge c c v 175 w a t j =t j max a power dissipation p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current brake inverse diode repetitive peak forward current maximum junction temperature peak repetitive reverse voltage i frm p tot i f repetitive peak forward current power dissipation v ce 1200v, tj top max 135 i cpuls t p limited by t j max collector-emitter break down voltage pulsed collector current v ce c 20 v t j max t j =t j max i c a p tot t h =80c 45 t h =80c 137 t j =t j max short circuit ratings turn off safe operating area dc collector current power dissipation maximum junction temperature t j max v rrm dc forward current p tot gate-emitter peak voltage a w 175 v t j =25c 100 1200 t j max t j =t j max v rrm a c a v 175 w a 1200 v t h =80c 49 t h =80c 126 16 t h =80c t h =80c 69 copyright vincotech 2 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance c -40+125 c -40+(tjmax - 25) storage temperature t stg copyright vincotech 3 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1 1,1 1,8 tj=125c 1,05 tj=25c 0,89 tj=125c 0,78 tj=25c 4 tj=125c 5 tj=25c 0,1 tj=125c thermal resistance chip to heatsink r thjh 0,74 tj=25c 5,4 6 6,6 tj=150c tj=25c 1,2 1,79 2,2 tj=150c 2,12 tj=25c 150 tj=150c tj=25c 500 tj=150c tj=25c 106 tj=150c 106 tj=25c 28 tj=150c 46 tj=25c 157 tj=150c 200 tj=25c 58 tj=150c 89 tj=25c 2,61 tj=150c 5,1 tj=25c 2,49 tj=150c 4,08 thermal resistance chip to heatsink r thjh phase-change material ? =3,4w/mk 0,61 k/w tj=25c 2,73 3,3 tj=150c 2,18 tj=25c 33 tj=150c 35 tj=25c 388 tj=150c 489 tj=25c 4,01 tj=150c 10,39 di(rec)max tj=25c 1018 /dt tj=150c 121 tj=25c 1,84 tj=150c 4,97 thermal resistance chip to heatsink r thjh phase-change material ? =3,4w/mk 0,75 k/w tj=25c ns a v a/s mws v mws a nc na 340 3100 none 600 50 phase-change material ? =3,4w/mk 10 10 gate emitter threshold voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current integrated gate resistor reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge c oss reverse transfer capacitance diode forward voltage gate charge inverter diode erec c rss q rr 0 pf v c ns 50 tj=25c 37 105 reverse current i r 1500 50 vv m ma k/w slope resistance (for power loss calc. only) v f v to r t 50 50 conditions characteristic values forward voltage threshold voltage (for power loss calc. only) input rectifier diode value inverter transistor t rr i rrm v f turn-on energy loss per pulse input capacitance output capacitance turn-off energy loss per pulse c ies q gate peak reverse recovery current collector-emitter saturation voltage v ge(th) v ce(sat) e on e off t f i ces r gint i ges t d(on) t r t d(off) rgon=16 15 600 1200 15 50 50 0,005 50 rgoff=16 rgon=16 15 0 20 v ce =v ge f=1mhz 600 0 15 copyright vincotech 4 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max conditions characteristic values value tj=25c 5 5,8 6,5 tj=150c tj=25c 1,5 1,92 2,3 tj=150c 2,37 tj=25c 250 tj=150c tj=25c 120 tj=150c none tj=25c 83 tj=150c 89 tj=25c 27 tj=150c 27 tj=25c 191 tj=150c 269 tj=25c 54 tj=150c 125 tj=25c 2,00 tj=150c 2,92 tj=25c 1,74 tj=150c 3,18 thermal resistance chip to heatsink r thjh phase-change material ? =3,4w/mk 0,69 k/w tj=25c 1,2 1,80 2,2 tj=150c 1,76 thermal resistance chip to heatsink r thjh phase-change material ? =3,4w/mk 1,38 k/w tj=25c 1 2,24 2,9 tj=150c 2,36 tj=25c 60 tj=150c tj=25c 30,8 tj=150c 39,2 tj=25c 146,4 tj=150c 423,1 tj=25c 2,321 tj=150c 4,84 di(rec)max tj=25c 1749 /dt tj=150c 917 tj=25c 0,9089 tj=150c 1,982 thermal resistance chip to heatsink r thjh phase-change material ? =3,4w/mk 1,1 k/w 960 25 600 160 155 rgon=16 1200 1200 600 25 35 35 0,0012 15 20 brake diode diode forward voltage reverse leakage current i r v f i rrm rgon=16 peak reverse recovery current reverse recovery energy t rr q rr e rec reverse recovery time reverse recovered charge peak rate of fall of recovery current 15 10 0 35 115 i ges 1950 ns pf mws na 0 15 15 0 35 rgon=16 rgoff=16 c ies e on r gint v ce =v ge c oss t d(on) t r t d(off) e off f=1mhz reverse transfer capacitance output capacitance v f c rss diode forward voltage brake inverse diode gate charge q gate turn-on energy loss per pulse turn-off energy loss per pulse t f fall time integrated gate resistor turn-off delay time collector-emitter saturation voltage rise time turn-on delay time input capacitance gate-emitter leakage current v ge(th) brake transistor gate emitter threshold voltage i ces collector-emitter cut-off incl diode v ce(sat) tj=25c tj=25c v a mws nc v vv a ns a/s c a copyright vincotech 5 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max conditions characteristic values value t=25c t=25c t=25c t=25c thermistor power dissipation constant power dissipation p deviation of r100 ? r/r r100=1486 mw rated resistance r mw/k 3,5 210 +4,5 -4,5 21511 % k t=25c 3884 k 3964 b (25/100) t=25c b-value b (25/50) vincotech ntc reference b-value f copyright vincotech 6 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t j = 25 / 150 c t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 12 v ge (v) i c (a) 0 25 50 75 100 125 150 0 0,5 1 1,5 2 2,5 3 3,5 4 v f (v) i f (a) 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 7 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a output inverter e on high t e off high t e on low t e off low t 0 3 6 9 12 15 0 20 40 60 80 100 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 3 6 9 12 15 0 15 30 45 60 75 r g ( w ) e (mws) e rec e rec 0 2 4 6 8 0 20 40 60 80 100 i c (a) e (mws) e rec e rec 0 2 4 6 8 0 15 30 45 60 75 r g ( w ) e (mws) copyright vincotech 8 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 i c (a) t ( m s) t rr t rr 0 0,2 0,4 0,6 0,8 1 1,2 0 15 30 45 60 75 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 15 30 45 60 75 r g ( w ww w ) t ( m s) t rr t rr 0 0,2 0,4 0,6 0,8 1 1,2 0 20 40 60 80 100 i c (a) t rr ( m s) copyright vincotech 9 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v output inverter i rrm i rrm 0 20 40 60 80 100 0 15 30 45 60 75 r gon ( w ww w ) i rrm (a) q rr q rr 0 4 8 12 16 0 15 30 45 60 75 r gon ( w ) q rr ( m c) i rrm i rrm 0 20 40 60 80 100 0 20 40 60 80 100 i c (a) i rrm (a) q rr q rr 0 4 8 12 16 0 20 40 60 80 100 i c (a) q rr ( m c) copyright vincotech 10 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,61 k/w rthjh = 0,60 k/w r thjh = 0,75 k/w rthjh = 0,73 k/w igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) 0,04 4,0e+00 0,04 3,7e+00 0,05 7,8e-01 0,07 5,6e-01 0,13 1,5e-01 0,21 9,7e-02 0,26 4,5e-02 0,31 2,9e-02 0,08 1,3e-02 0,07 6,0e-03 0,03 1,4e-03 0,05 6,6e-04 0,02 3,8e-04 output inverter t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 2000 4000 6000 8000 10000 0 15 30 45 60 75 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 500 1000 1500 2000 0 20 40 60 80 100 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt copyright vincotech 11 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 50 100 150 200 250 300 350 0 50 100 150 200 t h ( o c) p tot (w) 0 15 30 45 60 75 90 0 50 100 150 200 t h ( o c) i c (a) 0 60 120 180 240 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 12 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 50 a t h = 80 oc t j = 25 oc v ge = 15 v t j = t jmax oc figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typica l short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 1200 v v ce 800 v t j 175 oc t j = 150 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10us 0 2 4 6 8 10 12 14 16 18 20 0 50 100 150 200 q g (nc) v ge (v) 600v 0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 12 13 14 15 16 17 18 19 20 v ge (v) t sc (s) 0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc)/i c n copyright vincotech 13 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = 150 c rgon = 16 rgoff = 17 0 20 40 60 80 100 120 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 14 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t j = 25 / 150 c t p = 250 s t p = 250 s v ce = 10 v brake 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 v ge (v) i c (a) 0 15 30 45 60 75 0 0,8 1,6 2,4 3,2 4 4,8 v f (v) i f (a) 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 15 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 7 brake fwd figure 8 brake fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a brake e rec e rec 0 0,5 1 1,5 2 2,5 3 0 10 20 30 40 50 60 70 i c (a) e (mws) e rec e rec 0 1 2 3 4 5 0 15 30 45 60 75 r g ( w ww w ) e (mws) e off e on e on e off 0 1,5 3 4,5 6 7,5 9 0 10 20 30 40 50 60 70 i c (a) e (mws) e off e on e on e off 0 1,5 3 4,5 6 7,5 9 10,5 0 16 32 48 64 80 r g ( w ww w ) e (mws) copyright vincotech 16 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 11 brake igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 0,630 k/w r thjh = 1,10 k/w psx7p brake psx7p t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 60 70 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 16 32 48 64 80 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 17 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fwd figure 16 brake fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 140 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 18 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 1 brake inverse diode figure 2 brake inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at d = tp / t t j = 25 / 150 c t p = 250 s r thjh = 1,38 k/w figure 3 brake inverse diode figure 4 brake inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc psx7p brake inverse diode 0 5 10 15 20 25 30 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 120 140 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 19 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t j = 25 / 125 c d = t p / t t p = 250 s r thjh = 0,74 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 25 50 75 100 125 150 0 0,4 0,8 1,2 1,6 v f (v) i f (a) t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 40 80 120 160 200 240 0 30 60 90 120 150 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 80 90 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 20 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r (  ) [ ] w = ? ?? ? ? ?? ? ? ?? ? ? ?? ? - 25 100/25 11 25 )( tt b e r tr copyright vincotech 21 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet t j 150 c r gon 16  r goff 17  figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t doff = 0,21 s t don = 0,10 s t eoff = 0,70 s t eon = 0,38 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t f = 0,09 s t r = 0,03 s switching definitions output inverter general conditions == = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 2,9 3,1 3,3 3,5 3,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0 0,08 0,16 0,24 0,32 0,4 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 150 200 3 3,1 3,2 3,3 time(us) % t r v ce i c copyright vincotech 22 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 30,14 kw p on (100%) = 30,14 kw e off (100%) = 4,09 mj e on (100%) = 4,39 mj t eoff = 0,70 s t eon = 0,38 s figure 7 output inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 50 a i rrm (100%) = -45 a t rr = 0,73 s switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 2,95 3,05 3,15 3,25 3,35 3,45 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -200 -150 -100 -50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 4,1 time(us) % i d v d fitted copyright vincotech 23 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 50 a p rec (100%) = 30,14 kw q rr (100%) = 10,81 c e rec (100%) = 5,14 mj t qrr = 2,00 s t erec = 2,00 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 % i d q rr time(us) -20 0 20 40 60 80 100 120 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(us) % p rec e rec t erec copyright vincotech 24 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet t j 150 c r gon 16  r goff 16  figure 1 igbt figure 2 igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0,27 s t don = 0,09 s t eoff = 0,61 s t eon = 0,33 s figure 3 igbt figure 4 igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t f = 0,13 s t r = 0,03 s switching definitions brake general conditions == = i c10% v ge10% t don v ce3% -50 0 50 100 150 200 250 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 time (us) % t doff t eoff v ce i c v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 150 200 250 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % t r v ce i c copyright vincotech 25 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 5 igbt figure 6 igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 20,96 kw p on (100%) = 20,9586 kw e off (100%) = 3,18 mj e on (100%) = 2,92 mj t eoff = 0,61 s t eon = 0,33 s figure 7 fwd turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 35 a i rrm (100%) = -39 a t rr = 0,42 s switching definitions brake i c 1% u ge90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff u ce 3% u ge10% -50 0 50 100 150 200 2,85 2,95 3,05 3,15 3,25 3,35 3,45 time(us) % p on e on t eon i rrm10% i rrm90% i rrm100% t rr -150 -100 -50 0 50 100 150 3 3,1 3,2 3,3 3,4 3,5 time(us) % i d u d fitted copyright vincotech 26 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet figure 8 fwd figure 9 fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 35 a p rec (100%) = 20,96 kw q rr (100%) = 4,84 c e rec (100%) = 1,98 mj t qint = 1,00 s t erec = 1,00 s switching definitions brake t qint -150 -100 -50 0 50 100 150 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 time(us) % i d q rr -25 0 25 50 75 100 125 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 time(us) % p rec e rec t erec copyright vincotech 27 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet version ordering code in datamatrix as in packaging barcode a s without thermal paste 17mm housing v23990-p768-a60-pm p768-a60 p768-a60 outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 28 19 dec 2014 / revision 2
v23990-p768-a60-pm datasheet disclaimer life support policy as used herein: 2. a critical component is any component of a life support device or system whose failure to perform c an be reasonably expected to cause the failure of the life support device or sys tem, or to affect its safety or effectiveness. the information given in this datasheet describes t he type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the applicatio n or use of any product or circuit described herein; neither does it convey any licens e under its patent rights, nor the rights of others . vincotech products are not authorised for use as cr itical components in life support devices or system s without the express written approval of vincotech. 1. life support devices or systems are devices or s ystems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for u se provided in labelling can be reasonably expected to result in significant injury to the user. copyright vincotech 29 19 dec 2014 / revision 2


▲Up To Search▲   

 
Price & Availability of V23990-P768-A60-D2-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X